Текущее время: 12 дек 2017, 04:51
-


Новая темаОтветить Страница 1 из 1   [ 1 сообщение ]
Автор Сообщение
 Заголовок сообщения: Тепловой насос
СообщениеДобавлено: 27 сен 2010, 16:35 
Тепловой насос — устройство для переноса тепловой энергии от источника с более низкой температурой к источнику с более высокой температурой, фактически это холодильник с источником более низкой температуры во внешней среде или кондиционер, работающий на нагрев.

История идеи и принцип работы

Полтора века назадбританский физик Уильям Томсон придумал устройство под названием «умножитель тепла», основанное на следующих физических явлениях:

вещество затрачивает энергию при испарении и отдаёт энергию при конденсации

температура кипения вещества изменяется вместе с давлением

Принцип работы теплового насоса основан на том, что хладагент испаряется в камере с низким давлением и температурой и конденсируется в камере с высоким давлением и температурой, осуществляя таким образом перенос энергии.

Устройство

Основными элементами теплового насоса являются соединенные трубопроводом испаритель, компрессор, конденсатор и регулятор потока- дроссель, детандер или вихревую трубу. Схематично тепловой насос можно представить в виде системы из трех замкнутых контуров: в первом, внешнем, циркулирует теплоотдатчик (теплоноситель, собирающий теплоту окружающей среды), во втором — вещество, которое испаряется, отбирая теплоту теплоотдатчика, и конденсируется, отдавая теплоту теплоприемнику, в третьем — теплоприемник (вода в системах отопления и горячего водоснабжения здания).

Внешний контур (коллектор) представляет собой уложенный в землю или в воду (напр. полиэтиленовый) трубопровод, в котором циркулирует незамерзающая жидкость — антифриз. Источником низкопотенциального тепла может служить грунт, скальная порода, озеро, река, море и даже выход теплого воздуха из системы вентиляции какого-либо промышленного предприятия.

Во второй контур, где циркулирует хладагент, как и в бытовом холодильнике, встроены теплообменники — испаритель и конденсатор, а также устройства, которые меняют давление хладагента — распыляющий его в жидкой фазе дроссель (узкое калиброванное отверстие) и сжимающий его уже в газообразном состоянии компрессор.

Рабочий цикл

Жидкий хладагент продавливается через дроссель, его давление падает, и он поступает в испаритель, где вскипает, отбирая теплоту, поставляемую коллектором из окружающей среды. Далее газ, в который превратился хладагент, всасывается в компрессор, сжимается и, нагретый, выталкивается в конденсатор. Конденсатор является теплоотдающим узлом теплонасоса: здесь теплота принимается водой в системе отопительного контура. При этом газ охлаждается и конденсируется, чтобы вновь подвергнуться разряжению в расширительном вентиле и вернуться в испаритель. После этого рабочий цикл начинается сначала.

Эффективность

В процессе работы компрессор затрачивает электроэнергию. На каждый затраченный киловатт-час электроэнергии тепловой насос вырабатывает 2,5-5 киловатт-часов тепловой энергии.[источник не указан 23 дня] Соотношение вырабатываемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности теплового насоса. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.

По этой причине тепловой насос должен использовать по возможности большее количество источника низкопотенциального тепла, не стремясь добиться его сильного охлаждения. В самом деле, при этом растет эффективность теплового насоса, поскольку при слабом охлаждении источника тепла не происходит значительного роста разницы температур. По этой причине тепловые насосы делают так, чтобы масса низкотемпературного источника тепла была значительно большей, чем нагреваемая масса.

Отличие теплового насоса от топливных источников тепла состоит в том, что для работы, кроме энергии для компрессора, ему нужен также источник низкопотенциального тепла, в то время как в традиционных источниках тепла вырабатываемое тепло зависит исключительно от теплотворной способности топлива.

Проблема привязки теплового насоса к источнику низкопотенциального тепла, имеющего большую массу может быть решена[источник не указан 23 дня введением в тепловой насос системы массопереноса, например, системы прокачки воды. Так устроена система центрального отопления Стокгольма.

Условный КПД тепловых насосов

Тепловой насос способен, используя высокопотенциальные источники энергии, «накачать» в помещение (в процентах от затраченной) от 200 % до 600 % низкопотенциальной тепловой энергии. В этом нет нарушения закона сохранения энергии, так как при этом охлаждается окружающая среда.

Теоретически применение тепловых насосов для обогрева помещений эффективнее газовых котлов. Современные парогазотурбинные установки на электростанциях имеют КПД, незначительно меньший КПД газовых котлов. В результате при переходе электроэнергетики на современное оборудование и при применении тепловых насосов можно получить экономию газа до 3-5 раз в сравнении с газовыми котлами.

Виды тепловых насосов и источники энергии

По виду теплоносителя во входном и выходном контурах насосы делят на шесть типов: «грунт—вода», «вода—вода», «воздух—вода», «грунт—воздух», «вода—воздух», «воздух—воздух».

фективность и выбор определённого источника тепловой энергии зависит от климатических условий.

Практические рекомендации

При использовании в качестве источника тепла энергии грунта трубопровод, в котором циркулирует антифриз, зарывают в землю на глубину 1 метр.[источник не указан 23 дня Минимальное рекомеднуемое расстояние между трубами коллектора — 0,8-1 м.

Специальной подготовки почвы не требуется. Но желательно использовать участок с влажным грунтом, если же он сухой, контур надо сделать длиннее. Ориентировочное значение тепловой мощности, приходящейся на 1 м трубопровода, 20-30 Вт. Таким образом, для установки теплового насоса производительностью 10 кВт необходим земляной контур длиной 350—450 м, для укладки которого потребуется участок земли площадью около 400 м? (20х20 м). При правильном расчете контур не влияет на зеленые насаждения.[источник не указан 23 дня

Если свободного участка для прокладки коллектора нет или в качестве источника тепла используется скалистая порода, трубопровод опускается в скважину. Не обязательно использовать одну глубокую скважину, можно пробурить несколько неглубоких, более дешевых, чтобы получить общую расчетную глубину. Иногда в качестве скважин используют фундаментные сваи.

Ориентировочно на 1 погонный метр скважины приходится 50-60 Вт тепловой энергии.[источник не указан 23 дня] Таким образом, для установки теплового насоса производительностью 10 кВт необходима скважина глубиной 170 м.


Хладагент подается непосредственно к источнику земного типа, что обеспечивает высокую эффективность геотермальной отопительной системы. Испаритель устанавливают в грунт горизонтально ниже глубины промерзания или в скважины диаметром 40-60 мм пробуренные вертикально либо под уклоном до глубины 15-30 м. Благодаря такому инженерному решению устройство теплообменного контура производится на площади всего несколько квадратных метров, не требует установки промежуточного теплообменника и дополнительных затрат на работу циркуляционного насоса.

При использовании в качестве источника тепла близлежащего водоема контур укладывается на дно. Этот вариант принято считать идеальным: не слишком длинный внешний контур, «высокая» температура окружающей среды (температура воды в водоеме зимой всегда положительная), высокий коэффициент преобразования энергии тепловым насосом.

Ориентировочное значение тепловой мощности на 1 м трубопровода — 30 Вт. Таким образом, для установки теплового насоса производительностью 10 кВт необходимо уложить в озеро контур длиной 300 м. Чтобы трубопровод не всплывал, на 1 пог. м устанавливается около 5 кг груза.

Для получения тепла из теплого воздуха (например, из вытяжки системы вентиляции) используется специальная модель теплового насоса с воздушным теплообменником. Тепло из воздуха для системы отопления и горячего водоснабжения также можно собирать на производственных предприятиях.

Если тепла из внешнего контура все же недостаточно для отопления в сильные морозы, практикуется эксплуатация насоса в паре с дополнительным генератором тепла (в таких случаях говорят об использовании би валентной схемы отопления). Когда уличная температура опускается ниже расчетного уровня (температуры бивалентности), в работу включается второй генератор тепла — чаще всего небольшой электронагреватель.

Преимущества и недостатки

К преимуществам тепловых насосов в первую очередь следует отнести экономичность: для передачи в систему отопления 1 кВт·ч тепловой энергии установке необходимо затратить всего 0,2-0,35 кВт·ч электроэнергии. Кроме того, теплонасос не сжигает топлива и не производит вредных выбросов в атмосферу. Он не требует специальной вентиляции помещений и абсолютно безопасен. Все системы функционируют с использованием замкнутых контуров и не требуют эксплуатационных затрат, кроме стоимости электроэнергии, необходимой для работы оборудования.

Еще одним преимуществом тепловых насосов является возможность переключения с режима отопления зимой на режим кондиционирования летом: просто вместо радиаторов к внешнему коллектору подключаются фэн-койлы.

Тепловой насос надежен, его работой управляет автоматика. В процессе эксплуатации система не нуждается в специальном обслуживании, возможные манипуляции не требуют особых навыков и описаны в инструкции.

Важной особенностью системы является ее сугубо индивидуальный характер для каждого потребителя, который заключается в оптимальном выборе стабильного источника низкопотенциальной энергии, расчете коэффициента преобразования, окупаемости и прочего.

Теплонасос компактен (его модуль по размерам не превышает обычный холодильник) и практически бесшумен.

Хотя идея, высказанная лордом Кельвином в 1852 году, была реализована уже спустя четыре года, практическое применение теплонасосы получили только в 30-х годах прошлого века. В западных странах тепловые насосы применяются давно — и в быту, и в промышленности. Сегодня в Японии, например, эксплуатируется около 3 миллионов установок, в Швеции около 500 000 домов обогревается тепловыми насосами различных типов.

Перспективы

Дляорганизации теплового насоса необходимы высокие первоначальные затраты: стоимость насоса и монтажа системы составляет $300-1200 на 1 кВт необходимой мощности отопления. Время окупаемости теплонасосов составляет 4-9 лет, при сроке службы по 15-20 лет до капитального ремонта.

Существует и альтернативный взгляд на экономическую целесообразность установки теплонасосов. Так если установка теплонасоса производится на средства взятые в кредит, экономия от использования теплонасоса может быть меньше, чем стоимость использования кредита. Поэтому массовое использования теплонасосов в частном секторе можно ожидать если стоимость теплонасосного оборудования будет сопоставима с затратами на установку газового отопления и подключения к газовой сети.

Еще более многообещающей является система, комбинирующая в единую систему теплоснабжения геотермальный источник и тепловой насос. При этом геотермальный источник может быть как естественного (выход геотермальных вод), так и искусственного происхождения (скважина с закачкой холодной воды в глубокий слой и выходом на поверхность нагретой воды).

Другим возможным применением теплового насоса может стать его комбинирование с существующими системами централизованного теплоснабжения. К потребителю в этом случае может подаваться относительно холодная вода, тепло которой преобразуется тепловым насосом в тепло с потенциалом, достаточным для отопления. Но при этом вследствие меньшей температуры теплоносителя потери на пути к потребителю (пропорциональные разности температуры теплоносителя и окружающей среды) могут быть значительно уменьшены. Также будет уменьшен износ труб центрального отопления, поскольку холодная вода обладает меньшей коррозионной активностью, чем горячая.

Ограничения применимости тепловых насосов

При слишком большой разнице между температурой на улице и в доме, тепловой насос теряет эффективность (предел применимости в системах отопления домов за счёт откачки тепла от наружного воздуха — около ?15-20°С). Для решения этой проблемы применяются системы откачки тепла из грунта либо грунтовых вод. Для этого в грунте ниже точки промерзания укладываются трубы, в которых циркулирует теплоноситель, либо (в случае обильных грунтовых вод) через теплонасосное оборудование прокачиваются грунтовые воды.

Ещё огромное «НО» заключено в конкретных тарифах на электричество и газ. Для производства 1 кВт-часа электроэнергии необходимо затратить 1/3 кг условного топлива. В результате стоимость калории электрической и газовой различается в 3-10 раз. Что приводит к неэффективности теплонасоса по сравнении с газовым отопительным оборудованием.

Рядом фирм исследовались теплонасосы типа «стирлинг-стирлинг», где обогреваемый газом двигатель Стирлинга приводил в движение тепловой насос Стирлинга. Ожидалось, что такой теплонасос на каждую газовую калорию сможет добавить ещё 1-2 калории, взятые из окружающей среды. К сожалению, эксперименты не дали ожидаемых результатов и были прекращены. Конкретных данных о работах опубликовано не было. Но можно предположить, что виной оказалась малая разница температур.[источник не указан 23 дня Чтобы обеспечить потребную мощность теплопередачи, тепловой насос типа стирлинга должен иметь большую площадь теплообмена. Машины с паровым циклом (смесь «жидкость-пар») оказываются в этом случае дешевле и компактнее.

Основные схемы отопления с применением тепловых насосов

Индивидуальное отопление (отопление квартир)

Наиболее простой вариант — использование моноблочных модулей «воздух-вода» источник.. К примеру, отопление и горячее водоснабжение двухкомнатной квартиры площадью 60 кв.м. может вполне обеспечить модуль номинальной мощностью 5.5 кВт. Для южных регионов Украины такой модуль обеспечит среднесезонный отопительный коэффициент порядка 2.75.

Кроме того, потребитель дополнительно получает бесплатную систему кондиционирования, которая обеспечит его и бесплатной горячей водой в летнее время. Еще более эффективным станет применение системы индивидуального отопления с помощью ТН в случае введения тарифов централизованного теплоснабжения, дифференцированных по температуре теплоносителя. Использование ТН для догрева теплоносителей до нужной температуры позволит снизить стоимость единицы потребляемой тепловой энергии в 6-8 раз по сравнению с централизованными системами теплоснабжения.

Стандартные объекты обогрева:


Бассейны

Дачи, коттеджи

Квартиры

Гостиницы, рестораны

Коттеджные городки

Офисно-торговые центры

Производственные помещения


http://ecotoc.ru/l


Вернуться к началу
  
 
Показать сообщения за:  Поле сортировки  
Новая темаОтветить Страница 1 из 1   [ 1 сообщение ]


Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  
cron


 
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group